1.

Is I_2 greater than, less than, or equal to I_1 ? Explain.

$$I_1$$
 of I_2 are in series.
 $I_1 = I_2$

 I_{i}

 I_{λ}

metal 2 has

a

 I_2

2.

All wires in this figure are made of the same material and have the same diameter. Rank in order, from largest to smallest, the currents I_1 to I_4 .

Order:

Explanation:

At jon a
$$I_1 = I_2 + I_3$$

$$L_1 > L_2, L_3$$
At jen b $L_2 + L_3 = L_4$

sure since wires are some material of some divensions, : | I1 = I2 > I2 = I3 I2 = I3.

3.

Metal 1 and metal 2 are each formed into 1-mm-diameter wires. The electric field needed to cause a 1 A current in metal 1 is larger than the electric field needed to cause a 1 A current in metal 2. Which metal has the larger conductivity? Explain.

$$J = \sigma E$$

$$J = \sigma E \Rightarrow PA/D/ANE \quad \sigma = \frac{1}{AE}$$

$$|avgev conductivity, |avgev conductivity, |av$$

4. If a metal is heated, does its conductivity increase, decrease, or stay the same? Explain.

- 5. Wire 1 and wire 2 are made from the same metal. Wire 2 has a larger diameter than wire 1. The electric field strengths E_1 and E_2 in the wires are equal.
 - a. Compare the values of the two current densities. Is J_1 greater than, less than, or equal to J_2 ? Explain.

$$J = \sigma E$$
 some metal : $\sigma_1 = \sigma_2$, some $E : E_1 = E_2$

b. Compare the values of the currents I_1 and I_2 .

$$I = JA \qquad A_2 > A_1 \qquad \vdots \qquad I_2 > I_1$$

c. Compare the values of the electron drift speeds $(v_d)_1$ and $(v_d)_2$.

$$V_d = \frac{eE}{m}T$$
 $T_1 = T_2$ (same material)
 $E_1 = E_2$: $V_{d,1} = V_{d,2}$

6.

A wire consists of two equal-diameter segments. Their conductivities differ, with $\sigma_2 > \sigma_1$. The current in segment 1 is I_1 .

a. Compare the values of the currents in the two segments. Is I_2 greater than, less than, or equal to I_1 ? Explain.

b. Compare the strengths of the current densities J_1 and J_2 .

$$J_1 = J_2$$
 $J = \frac{I}{A}$ of $J_1 = J_2$ $J_2 = J_2$

c. Compare the strengths of the electric fields E_1 and E_2 in the two segments.

$$J = \sigma E$$

$$E_{\bullet} = \frac{J}{\sigma}$$

$$E_{\bullet} = \frac{J}{E_{2}} = \frac{\sigma_{2}}{\sigma_{1}}$$

$$SINCE \quad \sigma_{2} > \sigma_{1}$$

$$\int E_{1} > E_{2}$$

7.

The wires below are all made of the same material. Rank in order, from largest to smallest, the resistances R_1 to R_5 of these wires.

$$R_1 = \frac{L}{R^2} \qquad R_2 = \frac{L}{4R^2} \qquad R_3 = \frac{L}{2R^2} \qquad R_4 = \frac{2L}{R^2} \qquad R_5 = \frac{L}{R^2}$$

8.

The two circuits use identical batteries and wires of equal diameters. Rank in order, from largest to smallest, the currents I_1 to I_7 at points 1 to 7.

Order:

$$I_1 = I_2 = I_3$$
 (series)

Explanation:

wires 5 \$ 6 have some geometry: R5=R6 => I5=I6

if wire 3 has resistance R, wives 5 &6 also have resistance R

$$I_{4} = I_{5} + I_{6} \quad (\text{same } \Delta V, \text{ same } R)$$

$$I_{4} = I_{5} + I_{6} \quad (\text{junct. rule}) := I_{4} > I_{5}, I_{6}$$

$$\vdots \qquad \qquad I_{4} = I_{7} > I_{1} = I_{2} = I_{3} = I_{5} = I_{6} \qquad \qquad = \epsilon$$
resistors R_{1} to R_{2} :

9.

For resistors R_1 to R_2 :

a. Which end (left, right, top, or bottom) is more positive?

R: right

b. In which direction (such as left to right or top to bottom) does the potential decrease?

R1: right to left

R2: top to btm.

Expoints from high to low pot.

Wire 1 and wire 2 are made from the same metal. Wire 1 has twice the diameter and half the electric field of wire 2. What is the ratio I_1/I_2 ?

$$I = JA = \sigma EA \qquad \sigma_1 = \sigma_2 \text{ (same material)}$$

$$\frac{I_1}{I_2} = \frac{E_1 A_1}{E_2 A_2} = \frac{E_1}{E_2} \left(\frac{d_1}{d_2}\right)^2 \qquad A \propto d^2$$

$$= \frac{1}{2} (2)^2 = 2 \qquad \text{(i. } I_1 = 2I_2 \text{)}$$